Name_____

Unit 3 Practice Test

The following formulas will be provided on the quiz.

$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{4ac}$	$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	$a^2 + b^2 = c^2$
x = 2a	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	

Problems 1-4: Find the discriminant, number of solutions, and type of solution(s).

1.	$5x^2 + 6x - 1 = 0$	2.	$9x^2 - 42x + 49 = 0$	$3. x^2 - 2 = \mathbf{x}$	4.	$3x^2 = x - 8$
----	---------------------	----	-----------------------	----------------------------	----	----------------

Discriminant =	Discriminant =	Discriminant =	Discriminant =
Number of Solutions =			
Type of Solutions	Type of Solutions	Type of Solutions	Type of Solutions

Problems 5-6: Find all possible rational roots for each polynomial function.

5. $f(x) = 9x^3 + 3x^2 - x + 5$ 6. $f(x) = 3x^3 + x^2 - 7x + 6$

7. Which answer contains all zeros for
$$f(x) = 3x^3 - 2x^2 - 9x - 4$$

A. $x = 4, x = \frac{5 + \sqrt{23}}{6}, x = \frac{5 - \sqrt{23}}{6}$ B. $x = -1, x = \frac{5 + \sqrt{73}}{6}, x = \frac{5 - \sqrt{73}}{6}$ C. $x = 1, x = \frac{5 + \sqrt{23}}{6}, x = \frac{5 - \sqrt{23}}{6}$

Name

8. Which answer contains all zeros for $f(x) = 2x^3 + 5x^2 - 2x + 3$

A.
$$x = 1, x = \frac{1 + \sqrt{7}}{4}, x = \frac{1 - \sqrt{7}}{4}$$

B. $x = -1, x = \frac{1 + i\sqrt{7}}{4}, x = \frac{1 - i\sqrt{7}}{4}$
C. $x = -3, x = \frac{1 + i\sqrt{7}}{4}, x = \frac{1 - i\sqrt{7}}{4}$
D. $x = -3, x = \frac{-1 + i\sqrt{7}}{4}, x = \frac{-1 - i\sqrt{7}}{4}$

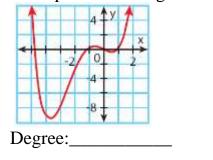
9. Given
$$P(x) = 3x^3 + 5x^2 + 4x + 2$$
 evaluate $P(\frac{1}{3})$

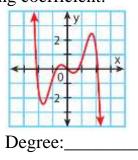
10. Determine whether (x + 4) is a factor of $P(x) = 2x^3 + 10x^2 + 5x - 12$

Find the root of P(x)?_____ Find the zero of P(x)?_____ *x*-intercept?_____

11. Solve the equation by factoring.

$$x^3 - 5x^2 - 24x = 0$$

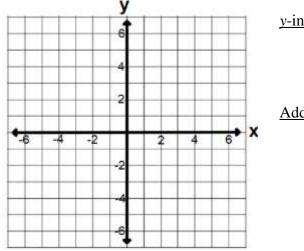

Name_____

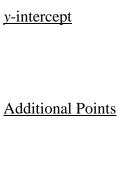

12. Solve the equation by factoring. $x^4 - 13x^2 + 36 = 0$

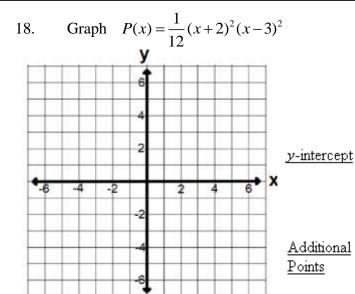
13. Factor $x^3 + 8$

14. Factor $8y^3 - 27$

- 15. Find the following for each polynomial.
 $f(\mathbf{x}) = 4x^7 + 5x^4 + 2$ f(x) = $-7x^6 + 2x^2 3x$ Degree:Degree:Leading Coefficient:Leading Coefficient:End Behavior:End Behavior:
- 16. Identify whether each graph has an odd or even degree and a positive or negative leading coefficient.

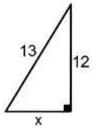

Leading Coefficient:_____ Leading Coefficient:_____

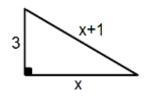

GSE Advanced Algebra


October 1, 2015

Graph at Maximum Solution Multiplicity Equation *x*–int. End Behavior for each zero turning points (zeros) x-axis (Use BOX 1) Degree = _____ Leading #17 Coefficient = _____ Graph Comparison (circle one) $P(x) = (x-1)^2(x-3)$ $y = x^2 / y = -x^2 / y = x^3 / y = -x^3$ End Behavior (*Use BOX 2*): #18 (Use BOX 1) Degree = _____ Leading Coefficient = $P(x) = \frac{1}{12}(x+2)^2(x-3)^2$ Graph Comparison (circle one) $y = x^2 / y = -x^2 / y = x^3 / y = -x^3$ End Behavior (Use BOX 2): Determine if the graphs do one of the following at the given *x*-intercepts. BOX 1 A: The graph crosses the *x*-axis at the *x*-intercept. (ODD MULTIPLICITY) B: The graph touches the *x*-axis and turns around at the *x*-intercept. (EVEN MULTIPLICITY) C: As $x \to +\infty$, $f(x) \to +\infty$ (Rises Right) E: As $x \to +\infty$, $f(x) \to -\infty$ (Falls Right) BOX 2 D: As $x \to -\infty$, $f(x) \to +\infty$ (Rises Left) F: As $x \to -\infty$, $f(x) \to -\infty$ (Falls Left)

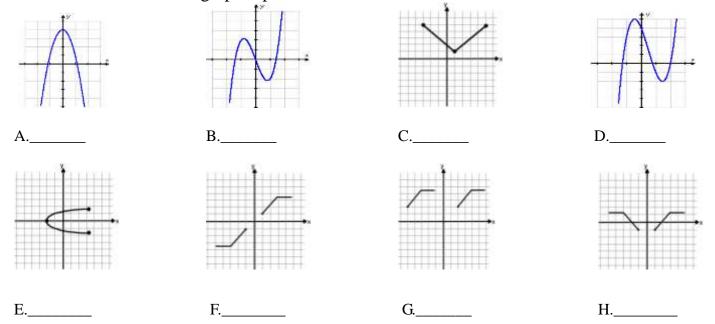
17. Graph $P(x) = (x-1)^2 (x-3)$





Name_

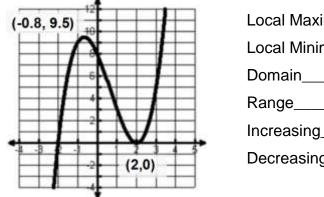
19. Find the unknown side of the right triangle.



- Name_____
- Find the unknown sides of the right triangle.

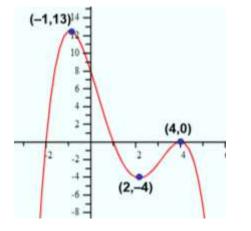
20.

21. Determine whether each graph represents an even function, odd function, or neither.



Name_

- 22. Determine which equations represent even functions, odd functions, or neither.
 - A. $g(x) = 6x^4 + 9x^2 + 5$ B. $h(x) = x^2 - 3x^4$ C. $f(x) = 5x^3 + 4x$


D.
$$f(x) = x^2 + 3x^4 - 2x$$

E. $f(x) = -x^9 + 5x^5 + 2$

23. Find the following for the graph.

Local Maxima
Local Minima
Domain
Range
Increasing
Decreasing

24. Find the following for the graph.

Local Maxima
Local Minima
Domain
Range
Increasing
Decreasing