\qquad

Graphs of Polynomial Functions NOTES

Finding the End Behavior of a function				
Degree	Leading Coefficient	Graph Comparison		End Behavior
Even	Positive	$y=x^{2} \bigsqcup$	Rise right Rise left	$\begin{aligned} & \text { As } x \rightarrow+\infty, f(x) \rightarrow+\infty \\ & \text { As } x \rightarrow-\infty, f(x) \rightarrow+\infty \end{aligned}$
Even	Negative		Fall right Fall left	$\begin{aligned} & \text { As } x \rightarrow+\infty, f(x) \rightarrow-\infty \\ & \text { As } x \rightarrow-\infty, f(x) \rightarrow-\infty \end{aligned}$
Odd	Positive	$y=x^{3}$	Rise right Fall left	$\begin{aligned} & \text { As } x \rightarrow+\infty, f(x) \rightarrow+\infty \\ & \text { As } x \rightarrow-\infty, f(x) \rightarrow-\infty \end{aligned}$
Odd	Negative	$y=-x^{3}$	Fall right Rise left	$\begin{aligned} & \text { As } x \rightarrow+\infty, f(x) \rightarrow-\infty \\ & \text { As } x \rightarrow-\infty, f(x) \rightarrow+\infty \end{aligned}$

Turning Points

A polynomial function has a degree of \boldsymbol{n}.
Maximum Number of Turning Points $=\boldsymbol{n} \mathbf{- 1}$

Steps for Graphing a Polynomial Function

1. Find the real zeros and y-intercept of the function.
2. Plot the x - and y-intercepts.
3. Make a table for several x-values that lie between the real zeros.
4. Plot the points from your table.
5. Determine the end behavior of the graph.
6. Sketch the graph.

Multiplicity

The multiplicity of root r is the number of times that $x-r$ is a factor of $P(x)$.

Odd Multiplicity
The graph of $P(x)$ crosses the x-axis.
Even Multiplicity
The graph of $P(x)$ touches the x-axis, but does not cross it. (i.e. U-turn)

Root \boldsymbol{b} has odd multiplicity
\qquad
September 25, 2015
Standards: MGSE9-12.F.IF. 4 / MGSE9-12.F.IF. 7 / MGSE9-12.F.IF.7c

Graphs of Polynomial Functions NOTES

Complete the table to identify the leading coefficient, degree, and end behavior of each polynomial.

	Polynomial	Leading Coefficient	Degree	Graph Comparison	End Behavior
1.	$f(\mathrm{x})=4 x^{7}+5 x^{4}+2$				
2.	$f(\mathrm{x})=-7 x^{6}+2 x^{2}-3 x$				
3.	$f(\mathrm{x})=-2 x^{5}-x^{3}+6 x$				

4. Identify whether each function graphed has an odd or even degree and a positive or negative leading coefficient.

Degree: \qquad
Leading Coefficient: \qquad _

Degree: \qquad
Leading Coefficient: \qquad -

Degree: \qquad
Leading Coefficient: \qquad -
\qquad
September 25, 2015

Equation	Solution (zeros)	x-int.	Multiplicity for each zero	$\begin{gathered} \text { Graph at } \\ x \text {-axis } \\ (\text { Use BOX 1) } \end{gathered}$	End Behavior	Maximum number of turning points
\#5 $P(x)=(x-1)^{2}(x-3)$					Degree $=$ \qquad Leading Coefficient = \qquad Graph Comparison (circle one) $y=x^{2} / y=-x^{2} / y=x^{3} / y=-x^{3}$ End Behavior (Use BOX 2): \qquad	
\#6 $P(x)=\frac{1}{12}(x+2)^{2}(x-3)^{2}$					Degree $=$ \qquad Leading Coefficient $=$ \qquad Graph Comparison (circle one) $y=x^{2} / y=-x^{2} / y=x^{3} / y=-x^{3}$ End Behavior (Use BOX 2): \qquad	
\#7 $P(x)=x(x-3)(x+2)$					Degree $=$ \qquad Leading Coefficient $=$ \qquad Graph Comparison (circle one) $y=x^{2} / y=-x^{2} / y=x^{3} / y=-x^{3}$ End Behavior (Use BOX 2): \qquad	

Determine if the graphs do one of the following at the given \boldsymbol{x}-intercepts.
BOX 1 A: The graph crosses the x-axis at the x-intercept. (ODD MULTIPLICITY)
B: The graph touches the x-axis and turns around at the x-intercept. (EVEN MULTIPLICITY)

End Behavior

BOX 2
C: As $x \rightarrow+\infty, f(x) \rightarrow+\infty \quad$ (Rises Right) $\quad \mathrm{E}:$ As $x \rightarrow+\infty, f(x) \rightarrow-\infty \quad$ (Falls Right)
$\mathrm{D}:$ As $x \rightarrow-\infty, f(x) \rightarrow+\infty \quad$ (Rises Left)
F: As $x \rightarrow-\infty, f(x) \rightarrow-\infty \quad$ (Falls Left)
\qquad September 25, 2015

Graphs of Polynomial Functions NOTES

$$
\text { \#5 } \quad \text { Graph } P(x)=(x-1)^{2}(x-3)
$$

\#7 Graph $P(x)=x(x-3)(x+2)$

\#6 \quad Graph $\quad P(x)=\frac{1}{12}(x+2)^{2}(x-3)^{2}$

y-intercept

Additional Points
y-intercept

Additional Points

