GSE Advanced Algebra September 25, 2015 Standards: MGSE9-12.F.IF.4 / MGSE9-12.F.IF.7 / MGSE9-12.F.IF.7c

Finding the End Behavior of a function					
Degree	Leading Coefficient	Grapi Compari	h son	End Behavior	
Even	Positive	y = x ²	Rise right	As $x \to +\infty$, $f(x) \to +\infty$	
			Rise left	As $x \to -\infty$, $f(x) \to +\infty$	
Even	Negative	y = -x ²	Fall right	As $x \to +\infty$, $f(x) \to -\infty$	
LVOI			Fall left	As $x \to -\infty$, $f(x) \to -\infty$	
Odd	Positive	$y = x^3$	Rise right	As $x \to +\infty$, $f(x) \to +\infty$	
		(Fall left	As $x \to -\infty$, $f(x) \to -\infty$	
Odd	Negative	$y = -x^3$	Fall right	As $x \to +\infty$, $f(x) \to -\infty$	
			Rise left	As $x \to -\infty$, $f(x) \to +\infty$	

Graphs of Polynomial Functions NOTES

Turning Points

A polynomial function has a degree of *n*.

Maximum Number of Turning Points = n - 1

	Steps for Graphing a Polynomial Function
1.	Find the real zeros and y-intercept of the function.
2.	Plot the x- and y-intercepts.
3.	Make a table for several <i>x</i> -values that lie between the real zeros.
4.	Plot the points from your table.
F	Determine the could be be device of the second

- 5. Determine the end behavior of the graph.
- 6. Sketch the graph.

Multiplicity

GSE Advanced Algebra September 25, 2015 Standards: MGSE9-12.F.IF.4 / MGSE9-12.F.IF.7 / MGSE9-12.F.IF.7c

Graphs of Polynomial Functions NOTES

Complete the table to identify the leading coefficient, degree, and end behavior of each polynomial.

	Polynomial	Leading Coefficient	Degree	Graph Comparison	End Behavior
1.	$f(x) = 4x^7 + 5x^4 + 2$				
2.	$f(\mathbf{x}) = -7x^6 + 2x^2 - 3x$				
3.	$f(\mathbf{x}) = -2x^5 - x^3 + 6x$				

4. Identify whether each function graphed has an odd or even degree and a positive or negative leading coefficient.

Leading Coefficient:

Leading Coefficient:_____

Leading Coefficient:	
----------------------	--

Name_____

GSE Advanced Algebra September 25, 2015

Name_____

Equation	Solution (zeros)	<i>x</i> —int.	Multiplicity for each zero	Graph at <i>x</i> -axis (<i>Use BOX 1</i>)	End Behavior	Maximum number of turning points
#5 $P(x) = (x-1)^2(x-3)$					Degree = Leading Coefficient = Graph Comparison (circle one) $y = x^2 / y = -x^2 / y = x^3 / y = -x^3$ End Behavior (<i>Use BOX 2</i>):	
#6 $P(x) = \frac{1}{12}(x+2)^2(x-3)$	2				Degree = Leading Coefficient = Graph Comparison (circle one) $y = x^2 / y = -x^2 / y = x^3 / y = -x^3$ End Behavior (<i>Use BOX 2</i>):	
#7 P(x) = x(x-3)(x+2)					Degree = Leading Coefficient = Graph Comparison (circle one) $y = x^2 / y = -x^2 / y = x^3 / y = -x^3$ End Behavior (<i>Use BOX 2</i>):	
BOX 1	Determine if the graphs do one of the following at the given <i>x</i>-intercepts.A: The graph crosses the <i>x</i>-axis at the <i>x</i>-intercept. (ODD MULTIPLICITY)B: The graph touches the <i>x</i>-axis and turns around at the <i>x</i>-intercept. (EVEN MULTIPLICITY)					
BOX 2End Behavior $C: As x \to +\infty, f(x) \to +\infty$ (Rises Right) $D: As x \to -\infty, f(x) \to +\infty$ (Rises Left) $E: As x \to +\infty, f(x) \to -\infty$ (Falls Right) $F: As x \to -\infty, f(x) \to -\infty$ (Falls Left)						

GSE Advanced Algebra September 25, 2015

#5

-6

Name_____

#7

y-intercept

Additional Points